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Abstract: A solid can be considered as a lattice structure of positive ions

which offer a periodic potential to the motion of valence electrons. Conse-

quently, the energy states of an electron in a solid will not be continuous but

bunch together into energy bands separated by forbidden energy gaps. This

enables one to classify solids into metals, semi-metals, semiconductors and

insulators. In metals, the valence band is half-filled and the next higher band

known as conduction band overlaps with the valence band. In semi-metals, the

valence band is filled but it is continuous with the conduction band without

any energy gap. In semiconductors, the valence band is filled and the conduc-

tion band is separated by a small energy gap of the order of 1 eV. In the case

of insulators, the valence band is completely filled and the conduction band

is well above the valence band with a large energy gap of the order of 5 eV.

The one-dimensional model of Kronig and Penney clearly demonstrates the

existence of energy bands separated by forbidden energy gaps for an electron

in a periodic potential.

1 Introduction

Any theory is based on certain postulates and the theory yields meaningful results
only in situations where those postulates are valid. Free electron theory is based
on the postulate that the valence electrons are free to move but confined within
the solid. Such a model is applicable only to metals and the free valence electron
theory [1] when treated quantum-mechanically yields quantitative agreement with
the experiments on electrical and thermal conductivity in metals. But it miserably
fails to explain the properties of semiconductors and insulators.

To explain the properties of semiconductors and insulators, one has to consider
the lattice structure of solids and the motion of electrons in the Coulomb field of the
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Figure 1: Splitting of an energy level of an atom (a) when two atoms are brought together,
(b) when four atoms are brought together and (c) when a large number of atoms are
brought together. This is depicted as a function of inter-atomic distance r

periodic structure of atoms in the solid. This is a challenging task and let us treat
this problem first qualitatively and then quantitatively using an one-dimensional
model.

Let us start with the simple case of hydrogen atom. The electron has discrete
energy levels: 1s, 2s, 2p, · · · . If two hydrogen atoms are brought together to form a
hydrogen molecule, it is found that each energy level is split into two closely spaced
energy levels. If four atoms are brought together, then each energy level is split into
four closely spaced levels. In a similar way, if N atoms are brought close together,
then each energy level can be expected to form N closely-spaced levels, known as
an energy band. This is illustrated in Fig. 1. Each energy band is separated from
the other by an energy gap. Since we consider the solid as a lattice structure of
positive ions, in which the electron is moving, then the energy levels of electron will
assume a band structure separated by energy gaps. In metals, the valence electrons
occupy the outermost shell which is only partially filled and it corresponds to the
valence band. The next higher shell which is empty corresponds to the conduction
band. In metals, there is an overlap of valence band with the conduction band and
they are found to be good conductors of electric current. In semiconductors, the
valence band is completely filled and the conduction band is separated by a small
energy gap of less than 1 eV. So, with a slight increase in temperature, the valence
electrons can jump into the conduction band and consequently, in semiconductors,
the resistance decreases with increase of temperature; whereas in metals, the resis-
tance increases with increase of temperature. In insulators, the energy gap is much
larger and hence offers great resistance to the flow of electricity. This is a qualitative
picture of conductors, semiconductors and insulators that emerges from the band
theory of solids using hand-waving arguments.

Since it is a formidable task to treat quantitatively the three-dimensional prob-
lem with the actual periodic potential, Kronig and Penney considered an one-
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dimensional problem of propagation of an electron in a highly simplified potential.
This simple model clearly shows the existence of energy bands and energy gaps for
an electron in a periodic potential [2,3,4,5].

2 The Kronig-Penney Model

Let us consider the propagation of an electron in an one-dimensional lattice structure
of ions with positive charge Ze, where Z denotes the charge of the ion. The electron
will experience a periodic potential

V (x0) = −Ze
2

x0

,

where x0 denotes the distance of the electron from any one of the ions. The negative
sign indicates that it is an attractive potential. This is displayed in Fig.2.

V (x) x
• • • • •

Figure 2: Variation of potential energy V (x) for an electron moving through a one-
dimensional lattice of ions with charge Ze, where Z denotes the charge of the ion. The •
represents the position of the ions and the dotted curves the potential V (x) experienced
by the electron.

It is the usual convention to shift the zero of the energy scale to the lowest con-
ceivable energy so that all the energies that we come across in our study are positive.

Kronig and Penney in the year 1930 devised an one-dimensional model as a
prelude to the study of electron propagation in the periodic potential due to the
ions arranged in a lattice structure in the solid. For the sake of analytical treatment
of the problem, he considered an highly artificial but simple periodic potential of
the form that extends both on the positive and negative side of x-axis, as shown in
Fig. 3.

V =

{
0, 0 < x < a, a+ b < x < 2a+ b, · · ·
V0, −b < x < 0, a < x < a+ b, · · ·

The time-independent Schrödinger equation for the two regions can be written as

d2ψ

dx2
+

(
2m

~2

)
Eψ = 0, 0 < x < a (1)

d2ψ

dx2
+

(
2m

~2

)
(E − V0)ψ = 0, −b < x < 0 (2)
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• • • • •

⇑ V (x)
‖
V0

=⇒ x0−b a a+b

Figure 3: Periodic square well potential used by Kronig and Penney. The dot (•) repre-
sents the positive ion, a the width of the potential well, b the width of the barrier and V0

the barrier height. The distance between any two positive ions is a+ b.

In the above equations, ψ denotes the electron wave function and ~ = h/(2π),
h being the Planck constant. The potential V0 is much larger than the electron
energy E. By defining two variables,

α2 =
2mE

~2
; β2 =

2m(V0 − E)

~2
(3)

the above differential equations can be written as

d2ψ

dx2
+ α2ψ = 0, 0 < x < a (4)

d2ψ

dx2
− β2ψ = 0, −b < x < 0 (5)

Following Bloch, we can write the solutions of the above equations in the form

ψ(x) = u(x)eikx, (6)

where eikx is a plane wave and u(x) which depends on the wave number k represents
a periodic function u(x) = u(x+a+b), where a represents the width of the potential
well and b denotes the width of the barrier. Substituting (6) in Eqs. (4) and (5), we
obtain second order differential equations in u(x).

d2u1

dx2
+ 2ik

du1

dx
+ (α2 − k2)u1(x) = 0; 0 < x < a (7)

d2u2

dx2
+ 2ik

du2

dx
− (β2 + k2)u2(x) = 0; −b < x < 0 (8)

Since Eqs. (7) and (8) are second order linear differential equations, each of them will
have two linearly independent solutions. Try the following forms for the solutions.

u1 = epx; u2 = erx.
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On substitution in Eqs. (7) and (8), we obtain quadratic equations in p and r, each
yielding two solutions.

p2 + 2ikp+ (α2 − k2) = 0; r2 + 2ikr − (β2 + k2) = 0;

p1 = i(α− k), p2 = −i(α + k); r1 = (β − ik), r2 = −(β + ik)

For convenience of writing, let us redefine p1, p2, r1, r2 as p, q, r, s.

p = i(α− k), q = −i(α + k); r = (β − ik), s = −(β + ik) (9)

Using the above data, we can write the general solutions of Eqs. (7) and (8) using
four constants A,B,C,D as given below:

u1 = Aepx +Beqx = Aei(α−k)x +Be−i(α+k)x; 0 < x < a (10)

u2 = Cerx +Desx = Ce(β−ik)x +De−(β+ik)x, −b < x < 0 (11)

The values of the constants can be determined using the boundary conditions.

[u1(x)]x=0 = [u2(x)]x=0;

[
du1(x)

dx

]
x=0

=

[
du2(x)

dx

]
x=0

(12)

[u1(x)]x=a = [u2(x)]x=−b;

[
du1(x)

dx

]
x=a

=

[
du2(x)

dx

]
x=−b

(13)

The boundary conditions (12) and (13) represent respectively the continuity condi-
tions and the periodic conditions for the functions u1(x) and u2(x) and they lead to
the following four equations, involving the constants A,B,C,D.

A+B = C +D (14)

pA+ qB = rC + sD (15)

epaA+ eqaB = e−rbC + e−sbD (16)

pepaA+ qeqaB = re−rbC + se−sbD (17)

They can be rewritten as

A+B − C −D = 0 (18)

pA+ qB − rC − sD = 0 (19)

epaA+ eqaB − e−rbC − e−sbD = 0 (20)

pepaA+ qeqa − re−rb − sesbD = 0 (21)

The above four homogeneous linear equations will yield non-vanishing solutions for
A,B,C.D, only if the determinant ∆ of the 4×4 matrix formed with their coefficients
is zero.

∆ =

∣∣∣∣∣∣∣∣
1 1 −1 −1
p q −r −s
epa eqa −e−rb −e−sb
pepa qeqa −re−rb −se−sb

∣∣∣∣∣∣∣∣ = 0 (22)
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where the quantities p, q, r, s are defined in Eq: (9). The determinant is invariant if
the two columns, third and fourth, are multiplied by −1.

∆ =

∣∣∣∣∣∣∣∣
1 1 1 1
p q r s
epa eqa e−rb e−sb

pepa qeqa re−rb se−sb

∣∣∣∣∣∣∣∣ = 0 (23)

It is possible to use the other properties of determinant to reduce it to a simple
structure but it is found that what we gain on the swings is lost on the roundabouts
in obtaining the final result. So, we shall take the straight route of finding the de-
terminant [2], the details of which is given in Appendix A.

The condition that the determinant ∆ = 0 leads to the following relation:

(β2 − α2)

2αβ
sin(αa) sinh(βb) + cosh(βb) cos(αa) = cos{k(a+ b)}. (24)

Kronig and Penney further simplified the above relation by assuming that V0 →∞
and b→ 0 in such a way that V0b remains finite. Since

sinhx =
ex − e−x

2
→ x and coshx =

ex + e−x

2
→ 1, as x→ 0,

the relation (24) reduces to

(β2 − α2)

2αβ
βb sin(αa) + cos(αa) = cos(ka). (25)

The quantities α and β are defined in Eq. (3). Accordingly,

β2 − α2 =
2m

~2
(V0 − 2E) ≈ 2m

~2
V0, since V0 � E.

Defining a quantity

P =
(β2 − α2)ab

2
=
mV0ab

~2
, (26)

Eq. (25) can be written as

P
sin(αa)

αa
+ cos(αa) = cos(ka), where α =

√
2mE

~
. (27)

The quantity V0b is sometimes referred to as the potential barrier strength and P as
the scattering power of the potential barrier. Eq. (27) gives the primary condition
for the existence of a solution for the electron in a periodic potential and yields the
allowed and forbidden energy regions for the electron.
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2.1 Allowed energy bands and forbidden energy region

The quantity cos(ka) on the right-hand side (R.H.S.) of Eq. (27) can have a limited
range of values from −1 to +1. So, the left-hand side (L.H.S.) which is a function
of α that depends on the electron energy E should necessarily be restricted to the
range of values that satisfy the R.H.S. Thus we obtain the allowed energy bands and
the forbidden energy regions. The allowed energy bands are the range of electron
energies permitted by Eq. (27) and the forbidden regions are those electron energies
that violate the condition (27).

Figure 4: Graph of P
αa sin(αa) + cos(αa) vs αa. The curve within the range −1 and +1

yields the allowed values of electron energy and the curve beyond this region gives the
forbidden energy range.(Source: Dekker [4])

This is depicted in Fig. 4. A curve is drawn with
P

αa
sin(αa) cos(αa) as Y-axis

and αa as X–axis. It is a wavy curve which cuts the parallel lines drawn through
y = −1 and y = +1 at points αa = nπ alternatively with n = ±1,±2,±3. The
electron energies that correspond to the wavy curve within the parallel lines are
allowed and the energies that correspond to the wavy curve outside this region are
forbidden.

Let us consider the two extreme cases: P → ∞ which corresponds to V0 → ∞
and P → 0 which corresponds to V0 → 0.
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If P →∞, then sinαa should tend to zero. That corresponds to αa = nπ, where
n is an integer.

α2a2 =
2mE

~2
a2 = n2π2

E =
n2π2~2

2ma2
(28)

This corresponds to the discrete energy levels of electron in an infinite square well
potential of width a and the energy levels are independent of k. This is what is
expected since the electron cannot tunnel through an infinite potential barrier.

If P → 0, then Eq. (27) reduces to

cosαa = cos ka or α = k.

This corresponds to the state of free electrons.

α2 =
2mE

~2
= k2

E =
~2k2

2m
=

p2

2m
, (29)

wher p denotes the momentum of the electron.

Thus the variation of P from zero to∞, covers the entire range of electron state,
from completely free to completely bound.

2.2 Electron energy as a function of wave number k

The free electron energy

E =
~2

2m
k2,

is quadratic in k and consequently E vs k curve is a parabola. In Fig. 5, it is shown
by the dotted curve. In the periodic potential, the energy of the electron shows
discontinuity at values of k = ±nπ

a
, where n is an integer as depicted in Fig. 5

and this leads to allowed energy bands and forbidden energy regions. The allowed
energy bands are often known as Brillouin zones.

From Fig. 5, we find that the first energy band is spread over the k values ranging
from −π

a
to π

a
. The range of k values for the second and higher energy bands are

fragmented. The second energy band covers the range of k values from −2π
a

to −π
a

and from π
a

to 2π
a

. This is depicted in Fig. 6.
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Figure 5: The dotted curve is the parabola E = (~2/2m)k2 representing the motion of
a free electron and the discontinuous solid curves represent the allowed energies for an
electron in a periodic potential. The allowed energy bands are shown on the left side in
the figure.

| | | | | | |
−3π

a
−2π

a
−π
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2π
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3π
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k︸ ︷︷ ︸ ︸ ︷︷ ︸︸ ︷︷ ︸
2nd zone

1st zone︷ ︸︸ ︷

Figure 6: The first two allowed energy bands known as Brillouin zones along with their
k values.

Further, one may observe that within an energy
band, the energy is a periodic function of k,
since the value of cos(ka) that occurs on the
right hand side of Eq. (27) is not altered if ka
is replaced by ka+2nπ or k by k+ 2nπ

a
, where n is

an integer (positive or negative). Since k is not
uniquely determined, it is possible to represent
second and higher energy bands also in the same
way as the first energy band within the range
of k values from −π

a
to π

a
. This is known as the

”Reduced wave vector” representation of energy
bands [4]. Fig. 7 depicts the first four energy
bands (known as Brillouin zones) in the reduced
vector space.

−π
a

E

π
a

0 −→ k

Fig. 7: Energy bands in reduced

wave vector space
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Let us explicitly show how the second energy band, usually expressed in terms of
k, can be represented in the reduced vector space using the corresponding reduced
wave number k′.

k = −2π

a
can be replaced by k′ = k +

2π

a
= 0.

k = −π
a

can be replaced by k′ = k +
2π

a
=
π

a
.

k =
π

a
can be replaced by k′ = k − 2π

a
= −π

a
.

k =
2π

a
can be replaced by k′ = k − 2π

a
= 0.

Thus we have folded the second energy band and expressed it in terms of reduced
wave vector with values ranging from k′ = −π

a
to k′ = π

a
. In a similar way, higher

energy bands also can be expressed in terms of the reduced wave vector k′.

2.3 Number of energy states in a band

Let us consider one-dimensional solid of length L with N lattice points. If a is the
distance between two lattice points, then L = Na. Due to the periodicity of the
wave function and Born cyclic condition [3,4],

ψ(x) = ψ(x+ L), (30)

where

ψ(x) = uk(x)eikx; ψ(x+ L) = uk(x+ L)eik(x+L) (31)

The modulating function uk(x) obeys the Bloch condition of periodicity of lattice.

uk(x) = uk(x+ a) = uk(x+ 2a) = · · · = uk(x+Na).

Since Na = L, it follows that

uk(x) = uk(x+ L). (32)

From Eqs. (30), (31) and (32), it follows that

eikL = 1 −→ cos kL = 1 −→ kL = 2nπ, (33)

where n is an integer, either positive or negative. Since k is the wave number of the
propagating electron in the solid, the set of values that n can take can be considered
as the number of energy states, available for the electron in the solid with wave
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number k. It follows that in a small interval of wave number dk, the number of
energy states dn available for the electron is

dn =
L

2π
dk. (34)

From Fig. 5, we find that for the first energy band k varies from −π
a

to +
π

a
and

consequently the number of energy states available for the electron is

n =
L

2π

∫ +π/a

−π/a
dk =

L

2π
[k]

π/a
−π/a =

L

a
= N, since L = Na. (35)

Thus, the number of states available for the electron in a band is N which is equal
to the number of lattice points or the number of ions in the one-dimensional solid.

In a similar way, we find that for the second energy band also, the electron has
N available states. The limiting values of k for the second energy band can be found
from Figs. 5 and 6.

n =
L

2π

(∫ −(π/a)

−(2π/a)

dk +

∫ (2π/a)

(π/a)

dk

)
=

L

2π

(π
a

+
π

a

)
=
L

a
= N (36)

It follows that every other higher energy band also contains N levels.

If we use the reduced vector representation, then it follows from Eq. (35) that
all energy bands will have the same number of energy states N . Since two electrons
(one with spin up and another spin down) can occupy each energy state, a total
number of 2N electrons can be accommodated in each energy band.

2.4 Effective mass of the electron

Invoking the wave-particle duality, the velocity of electron v can be identified with
the group velocity of de Broglie waves. In this dual role, the velocity of electron can
be defined as

v =
dE

dp
, (37)

where E denotes the energy of electron and p its momentum. If m is the rest mass
of the electron, then in the particle picture,

E =
p2

2m
;

dE

dp
=

p

m
= v,

In the wave picture,
E = ~ω, p = ~k,
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where ω denotes the angular frequency, k denotes the wave number and ~ = h/(2π).
Consequently,

v =
dE

dp
=
dω

dk
=

1

~
dE

dk
. (38)

If a force acts on an electron, it will be accelerated. The acceleration a of the electron
in terms of E becomes

a =
dv

dt
=

1

~
d

dk

(
dE

dk

)
dk

dt
=

1

~
d2E

dk2

dk

dt
. (39)

Now, let us subject a free electron to an Electric field E . The electron will
experience a force eE and will be accelerated. The energy gained by the electron in
a small interval of time dt will be

dE = eEvdt =
eE
~
dE

dk
dt.

Force = eE =
dp

dt
= m

dv

dt
= ~

dk

dt
= ma;

So, a =
eE
m

=
~
m

dk

dt
. (40)

This is for a free electron. For an electron in a periodic potential, let us define an
effective mass m∗ for the electron. Then, using Eqs. (40) and (39), we obtain

a =
eE
m∗

=
~
m∗

dk

dt
=

1

~
d2E

dk2

dk

dt
. (41)

From the above equation, we obtain an expression for the effective mass m∗.

m∗ =
~2

(d2E/dk2)
. (42)

The effective mass m∗ of an electron in a periodic potential depends on d2E/dk2

which can take both positive and negative values. So, m∗ can assume both positive
and negative values. This is shown in Fig. 8(c).
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Figs. 8(a) and 8(b) depict E and v as a function
of k for an electron in a periodic potential. v is a
sine wave (v = 0 at k = 0 and at k = ±π/2) for
electron in a periodic potential but proportional to
k for a free electron.
The degree of freedom of an electron in a periodic
potential is given by a factor fk.

fk =
m

m∗
=
m

~2

d2E

dk2
. (43)

The factor fk is a measure of the extent to which
an electron is free. If m∗ is large, fk is small and
the electron behaves as a heavy particle. If fk =1,
then the electron behaves as a free particle. From
Fig. 8(d), it can be observed that fk is positive
in the lower half of the band and negative in the
upper half of the band.

2.5 Effective number of free elec-
trons

The effective number of free electrons in a band is
equal to (since 2 electrons can occupy an energy
state)

Neff = 2
∑
k

fk,

where the summation k extends over all occupied
states in a band. For one-dimensional lattice of
length L, the effective number of free electrons in
the interval −k1 to k1 is obtained from Eqs.(34)
and (43), as shown in Fig.9.

dNeff = 2
L

2π
fkdk −→ Neff =

L

π

∫ k1

−k1
fkdk.

Neff =
2L

π

m

~2

∫ k1

0

d2E

dk2
dk =

2mL

π~2

[
dE

dk

]
k=k1

.

At k = ±nπ/a, dE/dk = 0. Hence Neff = 0 for
a completely filled band. dE/dk = 1 when the
energy band is half-filled and so Neff is maximum
for half filled bands.

Fig. 8: Energy, velocity, effective

mass and fk as a function of k

E

········

········
·····

·····
−π
a
−k1 k1

π
a

0
k

Fig.9: Partially filled valence

band
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3 Metals, Semiconductors and Insulators

The study of electron energy bands enables us to classify solids into metals, semicon-
ductors and insulators. In solids, the lower energy bands are completely filled and
the top-most energy band which is partially or completely filled is known as ”valence
band” and the next higher energy band which is empty is known as the ”conduc-
tion band”. The relative location of the conduction band from the valence band
distinguishes metals from semiconductors and insulators as depicted in Fig. 10.

−

−
-Valence

Band

−

−
-Conduction
Band

Conduction
Band

Band Gap ≈ 1 eV

Band Gap

(≈ 5 eV)

Valence
Band

−

−
-

−

−
-

−

−
-

−

−
-

····························································
·······································································································································

·······································································································································

(a) Metal (b) Semiconductor (c) Insulator

Figure 10: Relative location of valence band and conduction band in metal, semiconductor
and insulator.

In metals, the valence band is partially filled and the conduction band slightly
overlaps with valence band. This facilitates the free movement of electrons, enabling
good electrical and thermal conductivity. In semiconductors, the valence band is
completely filled and the conduction band is slightly above with a small energy
band gap of energy (≈ 1 eV). Silicon and Germanium are semiconductors with an
energy gap of 1.11 eV and 0.67 eV between valence and conduction bands. On
thermal heating, the electrons gain energy and move to conduction band and the
semiconductor becomes a conductor. The resistance of semiconductor decreases
with raise of temperature whereas in metals, the resistance increases with raise of
temperature. In the case of insulators, the band gap energy is larger than 5 eV and
so the insulators remain as insulators even when heated.

4 Concluding Remarks

The Kronig-Penney one-dimensional model clearly demonstrates the existence of
electron energy bands in solids with energy gaps. For more quantitative study, one
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has to resort to many three-dimensional models that have been developed subse-
quently. Augmented Plane Wave (APW) method, Korringa-Kohn-Rostoker (KKR)
method, the Density-Functional theory and many variations thereof are available
for detailed investigations.

Appendix A

In this Appendix, we shall evaluate the determinant ∆ and find the condition that
is to be satisfied for ∆ = 0. We shall follow essentially the method given in the book
by S.O. Pillai [2] but here it is presented in a way that the reader may find it easy
to understand.

∆ =

∣∣∣∣∣∣∣∣
1 1 1 1
p q r s
epa eqa e−rb e−sb

pepa qeqa re−rb se−sb

∣∣∣∣∣∣∣∣ = 0 (A.1)

It is possible to use the properties of determinant to reduce it to a simpler structure
but, as stated earlier, it offers no great advantage. So, we shall take the straight
route of finding the determinant.

∆ =

∣∣∣∣∣∣
q r s
eqa e−rb e−sb

qeqa re−rb se−sb

∣∣∣∣∣∣︸ ︷︷ ︸
(A )

−

∣∣∣∣∣∣
p r s
epa e−rb e−sb

pepa re−rb se−sb

∣∣∣∣∣∣︸ ︷︷ ︸
(B)

+

∣∣∣∣∣∣
p q s
epa eqa e−sb

pepa qeqa se−sb

∣∣∣∣∣∣︸ ︷︷ ︸
(C )

−

∣∣∣∣∣∣
p q r
epa eqa e−rb

pepa qeqa re−rb

∣∣∣∣∣∣︸ ︷︷ ︸
(D )

(A.2)

where

A = q(s− r)e−rbe−sb − r(s− q)eqae−sb + s(r − q)eqae−rb (A.3)

B = p(s− r)e−rbe−sb − r(s− p)epae−sb + s(r − p)epae−rb (A.4)

C = p(s− q)eqae−sb − q(s− p)epae−sb + s(q − p)eqaepa (A.5)

D = p(r − q)eqae−rb − q(r − p)epae−rb + r(q − p)eqaepa (A.6)
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∆ = A −B + C −D

= pq
(
eqae−rb + epae−sb − epae−rb − eqae−sb

)
+pr

(
e−rbe−sb − eqae−rb − epae−sb + eqaepa

)
+ps

(
−e−rbe−sb + eqae−sb + epae−rb − eqaepa

)
+qr

(
−e−rbe−sb + eqae−sb + epae−rb − eqaepa

)
+qs

(
e−rbe−sb − eqae−rb − epae−sb + eqaepa

)
+rs

(
−eqae−sb + eqae−rb + epae−sb − epae−rb

)
∆ = pq

{
eqa
(
e−rb − e−sb

)
− epa

(
e−rb − e−sb

)}
+pr

{
eqa
(
epa − e−rb

)
− e−sb

(
epa − e−rb

)}
+ps

{
eqa
(
e−sb − epa

)
− e−rb

(
e−sb − epa

)}
+qr

{
eqa
(
e−sb − epa

)
− e−rb

(
e−sb − epa

)}
+qs

{
eqa
(
epa − e−rb

)
− e−sb

(
epa − e−rb

)}
+rs

{
eqa
(
e−rb − e−sb

)
− epa

(
e−rb − e−sb

)}
= (pq + rs) (eqa − epa)

(
e−rb − e−sb

)
+(pr + qs)

(
eqa − e−sb

) (
epa − e−rb

)
+(ps+ qr)

(
eqa − e−rb

) (
e−sb − epa

)
The condition that the determinant ∆ = 0 leads to the following relation.

(pr + qs)
(
eqa − e−sb

) (
epa − e−rb

)
+ (ps+ qr)

(
eqa − e−rb

) (
e−sb − epa

)
= (pq + rs) (eqa − epa)

(
e−sb − e−rb

)
, (A.7)

where the quantities p, q, r, s are given by Eq. (9).

p = i(α− k); q = −i(α + k); r = β − ik; s = −(β + ik).

Substituting the values of p, q, r, s in Eq. (A.7), we obtain

pr + qs = i(α− k)(β − ik) + {−i(α + k)}{−(β + ik)}
= 2iαβ − 2k2. (A.8)

ps+ qr = i(α− k){−(β + ik)} − i(α + k)(β − ik)

= −2iαβ − 2k2 (A.9)

pq + rs = i(α− k){−i(α + k)} − (β − ik)(β + ik)

= α2 − β2 − 2k2. (A.10)



Electron Energy Bands in Solids 55

(epa − eqa) = ei(α−k)a − e−i(α+k)a

=
(
eiαa − e−iαa

)
e−ika = 2i(sinαa)e−ika. (A.11)(

epa − e−rb
)

= ei(α−k)a − e−(β−ik)b

= eiαae−ika − e−βbeikb. (A.12)(
epa − e−sb

)
= ei(α−k)a − e(β+ik)b

= eiαae−ika − eβbeikb. (A.13)(
eqa − e−rb

)
= e−i(α+k)a − e−(β−ik)b

= e−iαae−ika − e−βbeikb. (A.14)(
eqa − e−sb

)
= e−i(α+k)a − e(β+ik)b

= e−iαae−ika − eβbeikb. (A.15)(
e−rb − e−sb

)
= e−(β−ik)b − e(β+ik)b

=
(
e−βb − eβb

)
eikb = −2(sinh βb)eikb (A.16)

Substituting the above relations in Eq. (A.7), we obtain

(pr + qs)
(
eqa − e−sb

) (
epa − e−rb

)
= (2iαβ − 2k2)

(
e−i(α+k)a − e(β+ik)b

) (
eiαae−ika − e−βbeikb

)
= (2iαβ − 2k2)

{
e−2ika + e2ikb − e−ik(a−b) (e−iαae−βb + eiαaeβb

)}
= (2iαβ − 2k2)e−ik(a−b) {e−ik(a+b) + eik(a+b) −

(
e−iαae−βb + eiαaeβb

)}
= (2iαβ − 2k2)e−ik(a−b) {2 cos k(a+ b)−

(
e−iαae−βb + eiαaeβb

)}
(A.17)

(ps+ qr)
(
eqa − e−rb

) (
e−sb − epa

)
= (−2iαβ − 2k2)

(
e−iαae−ika − e−βbeikb

) (
eβbeikb − eiαae−ika

)
= (−2iαβ − 2k2)

{
e−iαa+βbe−ik(a−b) − e−2ika − e2ikb + eiαa−βbe−ik(a−b)}

= (−2iαβ − 2k2)e−ik(a−b) {e−iαa+βb + eiαa−βb − e−ik(a+b) − eik(a+b)
}

= (−2iαβ − 2k2)e−ik(a−b) {e−iαa+βb + eiαa−βb − 2 cos k(a+ b)
}

= (2iαβ + 2k2)e−ik(a−b) {2 cos k(a+ b)−
(
e−iαa+βb + eiαa−βb

)}
(A.18)

(pq + rs) (eqa − epa)
(
e−sb − e−rb

)
= (α2 − β2 − 2k2)

{
−2i(sinαa)e−ika

}{
2(sinh βb)eikb

}
= (α2 − β2 − 2k2)e−ik(a−b) {−2i(sinαa)} {2(sinh βb)} (A.19)

Let us substitute Eqs. (A.17) - (A.19) into Eq. (A.7). Since e−ik(a−b) is a common
factor that occurs on both sides, it cancels away.

(2iαβ − 2k2)
{

2 cos k(a+ b)−
(
e−iαae−βb + eiαaeβb

)}
+(2iαβ + 2k2)

{
2 cos k(a+ b)−

(
e−iαa+βb + eiαa−βb

)}
= (α2 − β2 − 2k2) {−2i(sinαa)} {2(sinh βb)} . (A.20)
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It can be easily checked that the terms involving the factor 2k2 in Eq. (A.20)
mutually cancel away.

(−2k2)
{

2 cos k(a+ b)−
(
e−iαae−βb + eiαaeβb

)}
+(2k2)

{
2 cos k(a+ b)−

(
e−iαaeβb + eiαae−βb

)}
= (−2k2)

{
e−imαa

(
eβk − e−βk

)
+ eimαa

(
e−βk − eβk

)}
= (−2k2)

{(
e−imαa − eimαa

) (
eβk − e−βk

)}
= (−2k2) {−2i(sinαa)} {2(sinh βb)} (A.21)

So, Eq. (A.20) reduces to a simple form.

(2iαβ)
{

4 cos k(a+ b)− e−iαa(e−βb + eβb)− eiαa(eβb + e−βb)
}

= −4i(α2 − β2)(sinαa)(sinh βb). (A.22)

This can be rewritten as

(2αβ) {4 cos k(a+ b)− 4 cosαa cosh βb} = 4(β2 − α2)(sinαa)(sinh βb), (A.23)

which reduces to a simple relation

(2αβ) {cos k(a+ b)− cosαa cosh βb} = (β2 − α2)(sinαa)(sinh βb). (A.24)

Thus, we obtain Eq. (24) of Kronig and Penney, which is the condition for the
determinant ∆ = 0 and consequently for the existence of a solution for the energy
states of electron in a periodic potential.

(β2 − α2)

2αβ
sin(αa) sinh(βb) + cosh(βb) cos(αa) = cos{k(a+ b)}.
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