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Abstract: The Wiedemann-Franz law states that the ratio of the thermal

conductivity to the electrical conductivity is the same for all metals at a given

temperature. It has been explained on the basis of free valence electron the-

ory of metals. In classical physics, the electrons are treated like molecules in

a perfect gas, obeying kinetic theory of gases. It has given only qualitative

agreement. In quantum physics, electrons are treated as Fermions, obeying

both the Pauli exclusion principle and Fermi-Dirac statistics. As a conse-

quence, not all the valence electrons but only those in the neighbourhood of

the Fermi level contribute to the reaction. A simple elegant method of deriv-

ing the formulae for electrical and thermal conductivity in quantum theory

is presented; which is not found in standard textbooks. The quantum theory

yields results in quantitative agreement with experiments.

1 Introduction

The ratio of the thermal conductivity K and the electrical conductivity σ of a metal
is proportional to temperature.

K

σ
= LT

where L is a constant, known as the Lorenz number. The empirical law is named
after Wiedemann and Franz who found in 1853 that K/σ is approximately the same
for different metals at the same temperature. The proportionality constant was dis-
covered by Lorenz in 1872.

Soon after the discovery of electron by J.J. Thomson in the year 1897, Paul
Drude proposed that the electrical conductivity in metals is essentially due to the
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flow of electrons. The Drude model of electrical conductivity was proposed in 1900
and extended by Lorentz in 1905. Sommerfeld applied quantum theory in 1928.

Now, we know that the electrical and thermal conductivities in a metal are due
to valence electrons [1-3] that flow freely through a lattice structure of positive ions
(nucleus + core electrons). In classical physics, the valence electrons can occupy a
continuous series of energy levels and they are treated like molecules in a perfect gas
as in kinetic theory of gases. All the valence electrons participate in the conduction
phenomena and the mean energy of an electron depends on the temperature.

In quantum physics, the valence electrons occupy a set of closely packed discrete
energy levels since they are confined within a volume and obey the Pauli exclusion
principle that no two identical electrons can occupy the same energy level. At ab-
solute zero temperature, all the electrons occupy the lowest possible energy levels
below a certain energy level known as the Fermi energy level. So, as the tempera-
ture is raised, not all the electrons can jump to higher energy levels but only those
just below the Fermi energy level can jump to the vacant energy levels above the
Fermi level. This is due to the operation of Pauli Exclusion principle. Hence in
quantum physics, only the valence electrons in the neighbourhood of Fermi energy
level participate in the electrical and thermal conductivities.

In Sec. 2, we have deduced expressions for electrical and thermal conductivities
in metals, using classical physics, assuming all valence electrons participate in the
process. It is shown that the ratio of the electrical conductivity and the thermal
conductivity is a constant at a given temperature but the proportionality constant
is less than half the value found experimentally. So, there is only a qualitative agree-
ment but not quantitative agreement.

In Sec. 3, the problem is addressed, using quantum physics. In quantum physics,
electrons are treated as Fermions, occupying discrete energy states and obeying the
Pauli exclusion principle that no two identical electrons can occupy the same state.
Electrons obey the Fermi-Dirac statistics and the distribution of electrons at a given
temperature is governed by the Fermi distribution function. In quantum physics,
only the electrons in the neighbourhood of Fermi energy level participate in the re-
action. It is a remarkable coincidence that the same expressions are obtained, both
in classical and quantum physics, for electrical and thermal conductivity in terms
of relaxation time τ and the electronic specific heat [CV ]el, but they assume differ-
ent values in quantum physics. The quantum physics yields values in quantitative
agreement with experiments at normal temperatures.

In Sec. 4 and Sec. 5, the problem is treated ab-initio using Fermi distribution
function [4-5] and expressions for electrical conductivity and thermal conductivity
are derived in a simple elegant way. This is something new and not found in stan-
dard textbooks [1-3].
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In Sec. 6, numerical results are presented, which will be useful to the reader for
a deeper understanding of the subject.

2 Classical Physics

2.1 Electrical conductivity

According to Ohm’s law, the resistance r = V/I, where V denotes the applied
voltage and I the current that flows through the conductor. If l is the length of
the conductor and A, its area of cross section and ρ, its specific resistance, then
r = ρl/A.

r =
ρl

A
=
V

I
=
E l
JA
−→ ρ =

E
J
.

where E is the electric field caused by the application of external potential V and
J is the current density (I = JA). The electrical conductivity σ is the reciprocal of
the specific resistance σ = 1/ρ

When an external electric field E is applied to a metal, then there will be a flow
of current I in the direction of the field with current density J .

J = σE , (1)

where σ denotes the electrical conductivity of the metal. The current flow is due to
the flow of electrons due to the application of the electric field.

J = −nev,

where n denotes the electron density, −e the electron charge and v the electron
velocity. In the absence of the electric field, electrons will be moving with random
velocity in all directions and hence the net current will be zero. On the application
of the electric field, electrons will undergo acceleration and due to the dissipating
forces arising out of the collisions with lattice points, the electrons will attain a
steady state with a drift velocity vd in the direction of the applied field, in time τ ,
known as the relaxation time. If m is the mass of the electron, then the acceleration
a that it will experience due to the application of electric field E is

a =
dv

dt
=
−eE
m

; vd = aτ =
−eEτ
m

(2)

J = −nevd =
ne2τ

m
E = σE . (3)

It follows that

σ =
J

E =
ne2τ

m
= neµ; µ =

eτ

m
= −vd

E . (4)
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The quantity µ is known as the mobility and it is the drift velocity of electron along
the field direction due to the application of unit intensity of electric field.

If λ is the mean free path, then λ is the average distance travelled by the electron
in time τ . Then

vd =
λ

τ
−→ τ =

λ

vd
. (5)

It follows that

σ =
ne2τ

m
=
ne2λ

mvd
. (6)

It is assumed that the valence electrons move over the entire solid as free electrons
like the molecules of a perfect gas in a container [1-3]. Accordingly, the electrons
obey the laws of kinetic theory of gases,

1

2
mv2

d =
3

2
kBT ; vd =

(
3kBT

m

)1/2

; (7)

where kB denotes the Boltzmann constant and T , the absolute temperature. . Thus,

σ =
ne2λ

mvd
=

ne2λ√
3mkBT

. (8)

According to the above Eq. (8), the resistivity is proportional to the square root
of temperature but we know in metals, the resistivity is directly proportional to
temperature. So, the classical theory which uses the kinetic theory of gases for
obtaining the temperature dependence is invalid.

2.2 Thermal conductivity

Generally heat is conducted in solids either by the free electrons or by lattice vibra-
tions. In metals, conduction by free electrons dominate and so let us confine our
consideration to free electron motion [1-3].

Consider a conductor with unit area of cross section, one end of which is kept at
a higher temperature than the other. In the steady state, the three sections A, B,
C , separated by a distance equal to the mean free path λ of the electron, will be at
different temperatures, as shown in Fig. 1. Consider the net heat transfer and the
net energy transfer across the section B. It is reasonable to assume that one-sixth of
the total number of electrons move from left to right and similarly an equal number
move from right to left and they contribute to the energy transfer. Let n be the
electron density and v, its average velocity.
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Heat flow

A B C

E + dE
dx λ E E − dE

dx λ

T + dT
dxλ T T − dT

dxλ

λ λ

Figure 1: Heat conduction through a conductor

Energy transfer from A to B =
1

6
nvλ

dE

dx

Energy transfer from C to B = −1

6
nvλ

dE

dx

Net energy transfer across B =
1

6
nvλ

dE

dx
−
(
−1

6
nvλ

dE

dx

)
=

1

3
nvλ

dE

dx

This should be equal to the net heat transfer Q = K(dT/dx) across B per unit
time. The quantity K is known as the thermal conductivity.

K
dT

dx
=

1

3
nvλ

dE

dx
=

1

3
nvλ

dE

dT

dT

dx

Thus, we obtain an expression for the thermal conductivity K.

K =
1

3
nvλ

dE

dT
=

1

3
nvλ[CV ]el, (9)

where [CV ]el = dE/dT is the specific heat associated with each electron. In terms

of the relaxation time τ =
λ

v
,

K =
1

3
nv2τ [CV ]el. (10)

Using the principles of kinetic theory of gases,

E =
1

2
mv2 =

3

2
kBT,

we get expressions for electronic specific heat [CV ]el and mean velocity of electron v.

[CV ]el ==
dE

dT
=

3

2
kB; v =

√
3kBT

m
(11)
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Substituting these values in K, we obtain

K =
nλkB

2

√
3kBT

m
. (12)

2.3 Ratio of K/σ

From Eqs. (8) and (12), we obtain

K

σT
=

3

2

(
kB
e

)2

(13)

Substituting the values of Boltzmann constant kB = 1.381×10−23 J/K and electronic
charge e = 1.602× 10−19 C, we get

K

σT
= 1.11× 10−8 Watt ohm/K2 (14)

Eq. (13) expresses the validity of Wiedemann-Franz law that the ratio of the
thermal conductivity to the electrical conductivity of a metal is proportional to
Temperature but does not yield correctly the proportionality constant.

3 Quantum Physics

Hitherto, we discussed the electrical and thermal conductivity in metals using the
concepts of classical physics and the kinetic theory of gases. We could arrive at only
qualitative results but failed to reach any quantitative agreement.

Let us now revisit the problem using Quantum Physics. The electrical and
thermal conduction in metals are due to the valence electrons which are confined
within the conductor. Since they are confined, they can occupy only discrete energy
levels and since they are fermions, they obey Pauli exclusion principle.

3.1 Concept of phase-space and discrete energy levels

As discussed in an earlier paper by Devanathan [6], let us use the concept of phase-
space to enumerate the discrete energy states of valence electrons in a metal.

The phase-space is a six-dimensional space which is a combination of ordinary
space and momentum space. In classical physics, the state of a particle can be
represented by a point in the phase-space. In quantum physics, the position and
momentum of a particle are conjugate variables and they cannot be simultaneously
determined accurately due to the operation of Heisenberg’s uncertainty principle
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and so the state of a particle can be represented only by a cell of finite volume h3,
where h is the Planck constant. Hence the number of discrete energy states Z(p)
with momentum lying between p and p+ dp is given by

Z(p)dp =
V 4πp2dp

h3
, (15)

where V denotes the volume of the conductor and h, Planck’s constant. Although
the energy states are discrete, they are so closely spaced that, for all practical
purposes, they can be considered continuous. Let us express the energy levels in
terms of the kinetic energy of electron E = p2/(2m), where m denotes the mass of
the electron. Substituting p =

√
2mE and pdp = mdE in the above expression, we

get the number of states lying between energy E and E + dE.

Z(E)dE =
4πV

h3
(2mE)1/2mdE =

4
√

2 πV m3/2E1/2

h3
dE. (16)

Electrons are spin-1
2 particles and so each electron can have two spin states, one

with spin-up and another with spin-down. So, the number of electrons N(E)dE
that can be accommodated in volume V with energy lying between E and E + dE
and their corresponding energy U(E)dE are

N(E)dE = 2Z(E)dE =

(
8
√

2πV m3/2

h3

)
E1/2dE = AE1/2dE (17)

U(E)dE = 2Z(E)EdE =

(
8
√

2 πV m3/2

h3

)
E3/2dE = AE3/2dE (18)

where A is a constant.

A =
8
√

2πV m3/2

h3
. (19)

3.2 Electron distribution at Temperature T = 0o K

At temperature T = 0o K, all the low-lying states up to the Fermi energy EF will be
filled. The valence electron distribution and the corresponding energy distribution
are N(E) and U(E) as given by Eqs. (17) and (18). Now, one can calculate the
total number Ntotal of valence electrons and their total energy Utotal and find the
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mean energy E0 of an electron at absolute temperature T = 0o K.

Ntotal(T = 0) =

∫ EF

0

N(E)dE = A

∫ EF

0

E1/2dE = A

(
E

3/2
F

3/2

)
. (20)

Utotal(T = 0) =

∫ EF

0

U(E)dE = A

∫ EF

0

E3/2dE = A

(
E

5/2
F

5/2

)
. (21)

E0 =
Utotal(T = 0)

Ntotal(T = 0)
=

3

5
EF . (22)

Also, one can find the mean electron density n and Fermi energy EF from Eqs. (20)
and (19).

n =
Ntotal(T = 0)

V
=

2

3

A

V
E

3/2
F =

(
16
√

2πm3/2

3h3

)
E

3/2
F . (23)

EF =

(
3h3n

16
√

2πm3/2

)2/3

=
h2

2m

(
3n

8π

)2/3

=
~2

2m
(3π2n)2/3, (24)

where ~ = h/(2π).

3.3 Electron distribution at Temperature T

As the temperature rises, electrons below the Fermi level will gain energy and move
to vacant states above the Fermi level and the distribution of electrons will follow
the Fermi-Dirac statistics. Let N(E, T ) denote the number of particles with energy
E and U(E, T ), their energy at temperature T o K. Then

N(E, T )dE = N(E)f(E, T )dE = AE1/2f(E, T )dE (25)

U(E, T )dE = EN(E)f(E, T )dE = AE3/2f(E, T )dE (26)

In the above Eqs.(25) and (26), A is a constant defined by Eq. (19) and f(E, T )
denotes the Fermi-Dirac distribution function.

f(E, T ) =
1

e(E−EF )/(kBT ) + 1
(27)

3.3.1 Fermi-Dirac Distribution Function

At T = 0o K,

f(E, T ) =

{
1, if E ≤ EF

0, if E > EF

As the temperature is raised, more and more electrons just below the Fermi level
will gain energy and move to the vacant levels immediately above the Fermi energy,
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. . . . . . . . . . . . . . . . . . . . . .

1

1
2

f(E, T )

EF E

T = 0

T1

T2 > T1

↙
←−
←−

0
(a)

N(E, T )

EF E0

T = 0
↓

T1←−

T2 > T1
↙

(b)

Figure 2: (a) Plot of f(E, T ) as a function of E and T ; (b) Plot of number of valence
electrons as a function of E and T .

as illustrated in Fig. 2(a).

Electrons in energy states well below the Fermi level are not affected and only
the electrons in the small energy range kBT immediately below the Fermi level are
affected. Given the Boltzmann constant kB = 1.381× 10−23 J/K, the value of kBT
at room temperature 3000 K can be expressed either in terms of Joules or in terms
of eV (1 eV= 1.602× 1019 J).

kBT = 300× 1.381× 10−23 J

=
300× 1.381× 10−23

1.602× 10−19
= 2.586× 10−2 eV. (28)

The energy range kBT is of the order of 10−2 eV which is very small compared to
the Fermi energy of most metals which is of the order of eV. For instance, the Fermi
energy of Copper is 7.05 eV.

Fig. 2(a) represents the Fermi-Dirac distribution function at three temperatures
T = 0, T1, T2. At the Fermi energy E = EF , the function f(E, T ) = 1 at tempera-
ture T = 0 and f(E, T ) = 1/2 at higher temperatures T = T1 and T = T2.

Fig. 2(b) represents the distribution of electrons N(E, T ) given by Eq. (25) as
a function of energy at different temperatures according to Fermi-Dirac distribution
function. It is observed that only the electrons in the neighbourhood of Fermi level
are disturbed, as the temperature is raised.

The Fermi distribution function at T = 0 is a step function at the Fermi energy
and hence its derivative is a delta function at the Fermi energy.
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3.3.2 To show that df/dE is similar to a delta function

In the above analysis, we have found that the change in the distribution of electrons
occurs only near the Fermi level as the temperature is increased and it is found that
the derivative of distribution function with respect to energy peaks at the Fermi
level and consequently df

dE
takes the form of a delta function, as shown in Fig. 3.

. . . . . . . . . . . . . . . . . . . . . .

..

..

..

..

..

..

..

..

..

. . . . . . . . . . . . . . . . . . . . . .

− df
dE

↙

1

1
2

f(E, T )

EF E

T = 0

T

↙

←−

0

Figure 3: Plot of f(E, T ) and − df
dE

as a function of E.

Let us now re-write the Fermi-Dirac distribution function in terms of x

x =
E − EF

kBT
−→ dx =

dE

kBT

and find its derivative.

f(E, T ) =
1

e(E−EF )/(kbT ) + 1
=

1

ex + 1
,

df

dE
=

d

dx

(
1

ex + 1

)
dx

dE

= − ex

(ex + 1)2

(
1

kBT

)
(29)

It can be easily checked that df/dE is an even function of x, since

ex

(ex + 1)2
=

e−x

(e−x + 1)2
.

⇓ ⇓
1(

e
x
2 + e−

x
2

)2 =
1(

e−
x
2 + e

x
2

)2

The function −(df/dE) behaves as a delta function with a peak at E = EF that
corresponds to x = 0 and its integral yields unity. Since df/dE = 0 beyond a
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narrow region around the Fermi energy, the integral can be extended from −∞ to
+∞, without affecting the result.

−
∫ ∞
−∞

df

dE
dE = − |f(E, T )|∞−∞ =

∣∣∣∣ 1

ex + 1

∣∣∣∣x=−∞

x=∞
= 1 (30)

Thus, we have shown that − df
dE

is similar to a delta function since it peaks at E = EF

and the integral
∫
−(df/dE)dE = 1.

3.4 Total number and total energy of electrons at Temper-
ature T

There will not be any change in the total number of electrons due to raise in tem-
perature but only a change in the distribution of electrons in the energy states.
Some of the electrons just below the Fermi energy will be lifted to vacant states
above and consequently, only the total energy of electrons will increase with raise
in temperature.

Since the total number of electrons is a constant, it is found that the Fermi en-
ergy decreases slightly with increase in temperature.

Let us now find Ntotal and also the total energy Utotal at temperature T .

Ntotal(T ) =

∫ ∞
0

N(E)f(E, T )dE = A

∫ ∞
0

E1/2f(E, T )dE (31)

Utotal(T ) =

∫ ∞
0

EN(E)f(E, T )dE = A

∫ ∞
0

E3/2f(E, T )dE (32)

To evaluate the above integrals, let us consider the following auxiliary integral I.

I =

∫ ∞
0

f(E, T )
d

dE
g(E)dE, (33)

where g(E) is some function of E which obeys the condition that g(E) → 0 as

E → 0. By inspection, we find that
dg(E)

dE
corresponds to AE1/2 in the integral

(31) for Ntotal(T ) and AE3/2 in the integral (32) for Utotal(T ). It is found that the
condition g(E)→ 0 as E → 0 is satisfied in both cases.

Integrating (33) by parts, we get

I = [f(E, T )g(E)]∞0 −
∫ ∞

0

g(E)f ′(E, T )dE

= −
∫ ∞

0

g(E)f ′(E, T )dE. (34)



12 V. Devanathan

The first term [f(E, T )g(E)]∞0 in the integral I vanishes since g(E) = 0 at E = 0
and the Fermi-Dirac function f(E, T ) → 0 as E → ∞. Since f ′(E, T ) is similar to
a delta function that peaks at the Fermi energy E = Ef , let us make a Taylor series
expansion of g(E) about the Fermi energy Ef . The Fermi energy Ef at temperature
T may slightly differ from the Fermi energy EF at temperature T = 0.

g(E) = g(Ef ) + (E − Ef )g′(Ef ) +
1

2
(E − Ef )2g”(Ef ) + · · · (35)

Substituting this in Eq. (34), we get

I = −
∫ ∞

0

f ′(E, T )

{
g(Ef ) + (E − Ef )g′(Ef ) +

1

2
(E − Ef )2g′′(Ef ) + · · ·

}
dE

= L0 g(Ef ) + L1 g
′(Ef ) + L2 g

′′(Ef ) + · · · (36)

where

L0 = −
∫ ∞

0

f ′(E, T )dE (37)

L1 = −
∫ ∞

0

(E − Ef )f ′(E, T )dE (38)

L2 = −1

2

∫ ∞
0

(E − Ef )2f ′(E, T )dE (39)

It can be easily checked that the derivative function f ′(E, T ) is large only near the
Fermi energy Ef and negligible at other energies. So, one can replace the lower
limit of integration 0 by −∞ and solve the integrals. Let us now find the derivative
function f ′(E, T ).

f ′(E, T ) =
df(E, T )

dE
=

d

dE

(
1

e(E−Ef )/(kBT ) + 1

)
(40)

For convenience, let us put

x =
E − Ef

kBT
. Then

dx

dE
=

1

kBT
and f(E, T ) =

1

ex + 1
. (41)

f ′(E, T ) =
df(E, T )

dE
=

d

dx

(
1

ex + 1

)
dx

dE
= − ex

(ex + 1)2

dx

dE

= − 1

kBT

ex

(ex + 1)2
(42)
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With this input, the integrals L0, L! and L2 are found.

L0 = −
∫ ∞
−∞

f ′(E, T )dE = − |f(E, T )|E=∞
E=−∞ =

∣∣∣∣ 1

ex + 1

∣∣∣∣x=−∞

x=∞
= 1 (43)

L1 = −
∫ ∞
−∞

(E − Ef )f ′(E, T )dE = kBT

∫ ∞
−∞

xex

(ex + 1)2
dx = 0 (44)

L2 =−1

2

∫ ∞
−∞

(E − Ef )2f ′(E, T )dE=
1

2
(kBT )2

∫ ∞
−∞

x2ex

(ex + 1)2
dx =

π2

6
(kBT )2 (45)

The integral L0 yields 1, L1 vanishes since the integral involves the odd function of
x, whereas we obtain a value for L2.

L2 =
π2

6
(kBT )2, (46)

using the value of the standard integral∫ ∞
−∞

x2ex

(ex + 1)2
dx =

π2

3
.

Substituting the values of L0, L1, L2 in Eq. (36), we get

I = g(Ef ) +
π2

6
(kBT )2g′′(Ef ) + · · · (47)

Eq. (47) gives the value of the auxiliary integral I, given in Eq. (33). This result can
be directly used to evaluate the integrals (31) and (32) to obtain the total number
of electrons and their total energy at a finite temperature T .

First let us find the total number of electrons at temperature T . For this, we
need to evaluate the integral (31), which represents the total number of electrons at
a finite temperature T , by making the following substitutions in Eq. (47):

d

dE
g(E) = N(E) = AE1/2; g(E) =

∫
N(E)dE; g(Ef ) =

∫ Ef

0

N(E)dE,

g′′(E) = N ′(E); g′′(Ef ) = N ′(E)|Ef
. (48)

The total number of electrons will be the same at T = 0o K and at any finite
temperature T , since we are considering the same number of valence electrons in
a fixed volume V . There will be no change in the total number of electrons but
only the distribution of electrons in the energy states will change with the change
in temperature. At T = 0o K, the total number of electrons is given by

Ntotal =

∫ EF

0

N(E)dE. (49)
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At a finite temperature T , the total number of electrons is given by

Ntotal =

∫ ∞
0

N(E)f(E, T )dE

=

∫ Ef

0

N(E)dE +
π2

6
(kBT )2|N ′(E)|Ef

. (50)

Eq. (50) is obtained from Eq. (47) by substituting (48).

3.4.1 Fermi energy at temperature T

The Fermi energy may depend upon the temperature, if you define the Fermi energy
as the energy at which − df

dE
peaks at a given temperature. Let the Fermi energy

at T = 0 be EF and the Fermi energy at temperature T be Ef . Equating the two
expressions (49) and (50) for the total number of electrons, we get∫ EF

0

N(E)dE =

∫ Ef

0

N(E)dE +
π2

6
(kBT )2|N ′(E)|Ef∫ EF

Ef

N(E)dE =
π2

6
(kBT )2|N ′(E)|Ef

. (51)

We note that N(E) is independent of temperature and will not vary much in the
small energy interval EF and Ef . So, N(E) can be pulled out of the integral.

N(Ef )(EF − Ef ) =
π2

6
(kBT )2|N ′(E)|Ef

Ef = EF −
π2

6
(kBT )2

∣∣∣∣N ′(E)

N(E)

∣∣∣∣
Ef

(52)

Since N(E) = AE1/2 and N ′(E) = 1
2
AE−1/2, we obtain N ′/N = 1/(2E). Substitut-

ing this value, we get

Ef = EF −
π2

12
(kBT )2 1

Ef

≈ EF

{
1− π2

12

(
kBT

EF

)2
}
. (53)

The above relation is obtained by replacing Ef by EF on the right-hand side, since
Ef ≈ EF . It may be observed that the Fermi energy Ef at temperature T is slightly
less than the Fermi energy EF at T = 0.
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3.4.2 Mean electron energy at temperature T and Electronic specific
heat

To find the total energy Utotal(T ) of valence electrons at temperature T , we revert
to Eq. (32) and the value of the integral is obtained by making the following
substitution in Eq. (47):

d

dE
g(E) = EN(E) = AE3/2; g(E) =

∫
EN(E)dE = A

∫
E3/2dE =

2

5
AE5/2;

g(Ef ) =

∫ Ef

0

N(E)dE; g′′(E) =
d

dE
{EN ′(E)}; g′′(Ef ) = N ′(E)|Ef

(54)

This yields the total energy Utotal(T ) of valence electrons at temperature T .

Utotal(T ) =

∫ EF

0

N(E)EdE +

∫ Ef

EF

N(E)EdE +
π2

6
(kBT )2

∣∣∣∣ ddE (EN(E))

∣∣∣∣
Ef

The first term on the right hand side of the above equation is just the total energy
of electrons at T = 0. In the second term, N(E) can be pulled out of the integral,
since it can be treated as a constant in the narrow energy interval EF and Ef .

Utotal(T ) = Utotal(T = 0) +N(EF )EF (Ef − EF ) +
π2

6
(kBT )2

∣∣∣∣ ddE (EAE1/2)

∣∣∣∣
Ef

= Utotal(T = 0) +N(EF )EF

(
− π2

12EF

(kBT )2

)
+
π2

6
(kBT )2

∣∣∣∣32AE1/2

∣∣∣∣
Ef

= Utotal(T = 0)− π2

12
(kBT )2N(EF ) +

π2

4
(kBT )2N(EF )

= Utotal(T = 0) +
π2

6
(kBT )2N(EF ) (55)

Eq. (55) is obtained using the relation (53). To find the mean energy of the electron
at temperature T , we divide the total energy Utotal(T ) of electrons at temperature
T by the total number of electrons Ntotal.

E =
Utotal(T )

Ntotal

=
Utotal(T = 0)

Ntotal

+
π2

6
(kBT )2N(EF )

Ntotal

= E0 +
π2

6
(kBT )2N(EF )

Ntotal

(56)

Since N(EF ) = AE
1/2
F and Ntotal =

2

3
AE

3/2
F , it follows that

N(EF )

Ntotal

=
3

2EF

.
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Substituting this value in Eq. (56), we get

E = E0 +
π2

4

(
kBT

EF

)2

EF

= E0 +
π2

4

(
kBT

EF

)2(
5

3
E0

)
= E0

{
1 +

5π2

12

(
kBT

EF

)2
}

(57)

Electronic specific heat is given by

[CV ]el =
dE

dT
=

5

6
π2E0

(
k2
BT

E2
F

)
, E0 =

3

5
EF

=
π2

2

(
k2
BT

EF

)
(58)

This is the value obtained from quantum theory for the electronic specific heat and
this has to be substituted in the expression obtained for thermal conductivity K.

3.4.3 Ratio of K/σ

Using classical physics, we found earlier expressions (Eqs. (10) and (6)) for the
thermal conductivity K and electrical conductivity σ. The same expressions hold in
quantum physics also. In quantum physics, only the electrons near the Fermi level
participate in the process and consequently we obtain a modified expression for the
electronic specific heat [CV ]el.

K =
1

3
nvdλ[Cv]el; σ =

ne2λ

mvd
.

K

σ
=

1

3e2
mv2

d[CV ]el; [CV ]el =
π2

2

(
k2
BT

EF

)
(59)

It is found that the electrons near the Fermi level only contribute to the electrical
and thermal conductivity in metals. Then

EF =
1

2
mv2

d.

Substituting this value, we get

K

σT
=
π2

3

(
kB
e

)2

. (60)
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Substituting the values kB = 1.381× 10−23 J/K and e = 1.602× 10−19 Coulomb, we
find

K

σT
= 2.445× 10−8 Watt ohm/K2. (61)

It is a remarkable result that
K

σT
is independent of the material and is the same

for all good conductors. This value for the Lorenz number is in excellent agreement
with experimental results.

In the above analysis, we have used expressions (6) and (10), obtained from
classical physics, for the electrical conductivity σ and thermal conductivity K. In
the following sections 4 & 5, let us derive expressions for σ and K, using quantum
theory. It comes out explicitly that the changes in the Fermi-dirac distribution
function [4,5] arises mainly due to the transport of electrons in the neighbourhood
of Fermi energy level.

4 Quantum Theory of Electrical conductivity

When an electric field E is applied to the conductor, electrons in the conductor will
be accelerated but due to the collision of electrons with lattice points, the electrons
will reach a steady state with a drift velocity. When the electric field is switched
off, the electrons in the conductor will switch back to the original state in time τ ,
known as the relaxation time.

Let f0 be the Fermi distribution function before the application of the electric
field.

f0 =
1

e(E−EF )/(kBT ) + 1
, E =

p2

2m
,

where E denotes the electron energy, p, its momentum and m, its mass.

The application of the electric field will affect the initial Fermi distribution func-
tion f0 and let f be the distribution function of the steady state that is reached
after the application of electric field. The steady state is reached because of the
retarding forces due to collision of electrons with lattice points. If the electric field
is switched off, the distribution function will revert back to f0 in time τ , known as
the relaxation time, due to the collision of electrons.(

df

dt

)
coll

=
f − f0

τ
.

When the electric field is switched on, the system will reach a steady state with a
distribution function f . This can be represented by the equation

df

dt
= −

(
df

dt

)
coll

= −f − f0

τ
. (62)
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The rate of change df/dt can be written as

df

dt
=

df

dE

dE

dt
and

dE

dt
=

d

dt

(
p2

2m

)
=

p

m

dp

dt
= v

dp

dt
. (63)

The rate of change of momentum is due to the application of the external electric

field E and
dp

dt
= −eE . Substituting this in Eqs. (62) and (63), we get

df

dE
ev · E =

f − f0

τ
(64)

f = f0 + ev · Eτ df
dE
≈ f0 + ev · Eτ df0

dE
(65)

Eq. (65) is obtained by restricting the expansion of f to first order.

The current density J = σE depends on the number of electrons crossing unit
area per second due to the application of the electric field and σ is defined as the
electrical conductivity.

J = σE = −
∫
evn(E)fdE

= −
∫
evn(E)

(
f0 + ev · Eτ df0

dE

)
dE (66)

where n(E) denotes the electron density with energy E. It can be observed that
f0 is an even function of v and so the first term of the integral which is an odd
function of v involving f0 vanishes. So, we need to evaluate only the second term in
the integral. So, the conductivity σ due to the application of electric field E along
the x-direction is

σ =

∫
evxn(E)evxτ

(
−df0

dE

)
dE

= e2τ

∫
v2
xn(E)

(
−df0

dE

)
dE (67)

It has been found from Eq. (43) that −(df0/dE) is of the type of delta function2

which peaks at the value E = EF , the Fermi energy. The mean value of v2
x is

v2
x =

1

3
v2 =

2

3

E

m
.

2Since the Fermi distribution function f0 is a step function in the energy scale, its differential
is the delta function. For a step-up function, the differential will peak in the upward direction and
for a step-down function, the differential will peak in the negative direction.
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Thus, we find that the conductivity σ gets contribution only from the electrons at
the Fermi surface.

σ = e2τ
2

3

EF

m
n(EF ) (68)

=
ne2τ(EF )

m
(69)

In the above Eqs., n(EF ) denotes electron density of electrons at the Fermi level and
n denotes the electron density of the valence electrons in the conductor. Eq. (68)
expresses the electrical conductivity in terms of n(EF ) and Eq. (69) expresses it in
terms of n, since one can express n(EF ) in terms of n and vice versa. According to
Eq. (17),

n(EF ) =
A

V
E

1/2
F , (70)

n =
A

V

∫ EF

0

E1/2dE =
2

3

A

V
E

3/2
F =

2

3
EFn(EF ), (71)

where A is given by Eq. (19).

A =
8
√

2πV m3/2

h3
.

Thus, we have shown that the expression (69), we have deduced for electrical
conductivity using quantum physics is essentially the same as Eq. (6), obtained in
classical physics, but only the relaxation time τ(EF ) corresponds to the electron at
the Fermi level.

5 Quantum Theory of Thermal Conductivity

In the study of heat conduction, we need to supply heat at one end of the conductor
and in the steady state, there will be a temperature gradient along the length of the
conductor. As a consequence, the Fermi distribution function f of valence electrons
will vary from point to point along the length of the conductor. The steady state
can be represented by the equation

df

dt
=
df

dx

dx

dt
= −f − f0

τ
, (72)

where τ denotes the relaxation time for the electron. The flow of heat is due to the

flow of electrons with drift velocity vx =
dx

dt
. There will be a change in the Fermi

distribution function along the x-axis.

f = f0 − vxτ
df

dx
≈ f0 − vxτ

df0

dx
. (73)
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Since
df0

dx
=
df0

dE

dE

dT

dT

dx
=
df0

dE
[CV ]el

dT

dx
,

where [CV ]el =
dE

dT
is the electronic specific heat, for which we have already derived

an expression in quantum physics.

[CV ]el =
π2

2

(
k2
BT

EF

)
,

The Fermi distribution function f in the steady state can be written as

f = f0 − vxτ [CV ]el
df0

dE

dT

dx
. (74)

From this, one can find the heat (energy) flow per second. To find the heat (energy)
flow along the x-direction, we need to multiply f by Evxn(E) and integrate over all
energies. The quantity Evxn(E) denotes the flow of energy per unit area per second
due to the passage of n(E) electrons, where n(E) represents the valence electron
density with energy E.

Q =

∫
Evxfn(E)dE =

∫
Evx

(
f0 − vxτ [CV ]el

df0

dE

dT

dx

)
n(E)dE (75)

The first term in the integral will vanish since f0 is an even function of v and vxf0

is an odd function of v. So,

Q = −
∫
Ev2

xτ [CV ]el
df0

dE

dT

dx
n(E)dE (76)

Using the classical definition of thermal conductivity,

Q = K
dT

dx
,

we find

K =

∫
Ev2

xτ [CV ]el

(
−df0

dE

)
n(E)dE (77)

We are considering the heat flow in the x-direction. So, v2
x =

1

3
v2 =

2E

3m
. At

low temperatures, −df0/dE has a sharp maximum at E = EF as a delta function
δ(E − EF ). So,

K =

∫
2

3

E2τ [CV ]el

m
δ(E − EF )n(E)dE

=
2

3

E2
F τ(EF )[CV ]eln(EF )

m
(78)
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The mean electron density (n) of valence electrons, the Fermi velocity of the electron
vF and the electronic specific heat [CV ]el are given by Eqs. (71) and (58).

n =
2

3
EFn(EF ); EF =

1

2
mv2

F ; [CV ]el =
π2

2

(
k2
BT

EF

)
.

Using the above relations, the thermal conductivity K can be expressed in different
ways

K =
EF τ(EF )n

m
[CV ]el =

1

2
v2
F τ(EF )n[CV ]el =

π2

3

nτ(EF )

m
k2
BT. (79)

This expression is similar to the one deduced from classical physics but the quantum
physics attributes the entire phenomenon to the valence electrons in the neighbour-
hood of Fermi energy EF .

6 Numerical Results

Let us now summarize the outcome of our theoretical studies and write down the
expressions (6) and (10) for electrical conductivity σ and thermal conductivity K
that we obtained from classical physics and later refined by quantum physics. They
depend upon the mean density n of valence electrons and also the Fermi energy EF

of the metal, given by Eqs. (23) and (24).

σ =
ne2τ(EF )

m
, where n =

2

3
EFn(EF ). (80)

K =
1

3
nv2

F τ(EF )[Cv]el, where [CV ]el =
π2

2

(
k2
BT

EF

)
=

π2

3

nτ(EF )

m
k2
BT. (81)

K

σT
=

π2

3

(
kB
e

)2

= 2.445× 10−8 Watt ohm/K2. (82)

n =
2

3

A

V
E

3/2
F =

(
16
√

2πm3/2

3h3

)
E

3/2
F . (83)

EF =
h2

2m

(
3n

8π

)2/3

=
~2

2m
(3π2n)2/3; ~ =

h

2π
. (84)

In the above Eqs., n denotes the mean density of valence electron, n(EF ), the valence
electron density at the Fermi energy level EF = 1

2mv
2
F and τ(EF ), the relaxation

time for the electron at the Fermi level EF . It is assumed that the relaxation time
is the same for both the electrical and thermal conductivity at a given temperature.
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The ratio
K

σT
is a constant known as the Lorenz number and it is the same for all

metals. The greatest triumph of the quantum theory is that it yields the correct
value for the Lorenz number, as determined from experiments.

The classical theory also predicted that
K

σT
is a constant but yielded a wrong

value for Lorenz number, a value much less than half of what was found experimen-
tally.

One cannot accept a theory if it yields the correct value for the ratio of two
quantities, since the errors may mutually cancel away in taking the ratio. A more
stringent test for the correctness of the theory is to calculate the electrical conduc-
tivity and thermal conductivity separately for each metal and compare them with
the experimental values.

From Eqs. (80) and (81), we find that only two quantities n and τ(EF ) depend
upon the sample.

How to find n, the number of valence electrons per unit volume? For this, we
need to find the number of atoms per unit volume and the valency of the metal.

n= Number of Valence electrons/m3 = Number of atoms/m3 × valency

There are two different ways of finding the number of atoms per unit volume. One
method is by invoking Avagadro’s hypothesis. If the atomic weight of a substance is
MA, then MA Kgm of substance (known as one K-mole of substance) contains NA

number of atoms, where NA is the Avagadro number (NA = 6.02× 1026/K.mole). If
ρ is the density of substance, then the volume of MA Kgm of substance is V = MA/ρ,
then

Number of atoms/m3 =
NA

V
=
ρNA

MA

,

where MA denotes MA Kgm. The Fermi energy is given by Eq. (84)

EF =
~2

2m
(3π2n)2/3 =

(
~2

2m
(3π2)2/3

)
n2/3.

In the above equation, we have separated the constant part from the only variable
n which depends on the metal. Substituting the values

~ =
h

2π
= 1.055× 10−34 Js

Electron mass m = 9.109× 10−31 Kg

we can express EF in terms of Joule or in terms of eV, using the conversion factor
1 eV= 1.602× 10−19.

EF = 58.473× 10−39n2/3 J = 36.50× 10−20n2/3 eV,
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where n denotes the number of valence electrons per cubic meter. The results are
presented in Table 1 for a few metals.

Table 1: Density of metal ρ, atomic weight MA, atomic density, valency, valence electron

density and Fermi energy for some selected metals

Density Atomic No. of atoms Valence Fermi
Metal of metal ρ weight per m3 Valency Electron density energy

(Kg/m3) MA (ρNA/MA) (n per m3) (EF in eV)

Sodium 0.97× 103 22.99 2.54× 1028 1 2.54× 1028 3.15

Copper 8.96× 103 63.54 8.49× 1028 1 8.49× 1028 7.05

Silver 10.49× 103 107.87 5.85× 1028 1 5.85× 1028 5.50

Gold 19.32× 103 196.97 5.90× 1028 1 5.90× 1028 5.53

Magnesium 1.74× 103 24.32 4.30× 1028 2 8.60× 1028 7.11

Aluminium 2.70× 103 26.98 6.02× 1028 3 18.06× 1028 11.63

The other method is based on the lattice structure (bcc, fcc, hcp, · · · ) and the lat-
tice parameters of the metals, which has been discussed at some length in an earlier
paper of mine [6]. The reader is referred to this paper for details. The results are
presented in Table 2 for comparison of the two methods. It is found that both
methods yield nearly the same values for valence electron density n.

Table 2: Lattice structure, lattice constants, atomic density, valency, valence electron

density and Fermi energy of some selected metals

Crystal Lattice Atomic Valence Fermi
Metal structure constant density Valency Electron density energy

in n.m. per m3 per m3 in eV

Sodium bcc a = 0.4281 2.65× 1028 1 2.65× 1028 3.23

Copper fcc a = 0.3615 8.50× 1028 1 8.50× 1028 7.05

Silver fcc a = 0.4086 5.85× 1028 1 5.85× 1028 5.50

Gold fcc a = 0.4080 5.89× 1028 1 5.89× 1028 5.52

Magnesium hcp

{
a = 0.3209
c = 0.5210

4.30× 1028 2 8.60× 1028 7.12

Aluminium fcc a = 0.4049 6.02× 1028 3 18.06× 1028 11.63

The other quantity that we need is the relaxation time τ(EF ) at the Fermi en-
ergy. τ(EF ) = λ/vF , where λ is the mean free path of electron and vF is the velocity



24 V. Devanathan

of electron at the Fermi level. It is rather a difficult task to find it precisely. The
redeeming feature is that the same τ(EF ) occurs in both the expressions for electri-
cal conductivity and thermal conductivity and the electrical conductivity has been
measured with great accuracy for all metals. So, let us use the experimental values
for σ to determine τ(EF ) and use it to find the thermal conductivity K. The results
are presented in Table 3.

Table 3: Valence electron density (n), relaxation time τ(EF ) at Fermi energy, electrical

conductivity (σ) and thermal conductivity (K) of selected metals at temperature T=293o

K and the Lorenz number L =
K

σT
.

Metal n τ(EF ) σ =
ne2τ(EF )

m
K =

π2

3

nτ(EF )k2BT

m
L =

K

σT
(m−3) (10−14 sec) (Ω−1 m−1) (Wm−1 K−1)

Sodium 2.54× 1028 3.10 2.22× 107 158.93 2.44× 10−8

Copper 8.49× 1028 2.49 5.96× 107 426.69 2.44× 10−8

Silver 5.85× 1028 3.82 6.30× 107 451.06 2.44× 10−8

Gold 5.90× 1028 2.47 4.10× 107 294.14 2.44× 10−8

Magnesium 8.60× 1028 0.98 2.38× 107 170.11 2.44× 10−8

Aluminium 18.06× 1028 0.69 3.50× 107 251.52 2.45× 10−8

Thus the results obtained using the free electron quantum theory are consistent
and highly successful in reproducing the experimental results on the electrical and
thermal conductivities of metals at normal temperatures.

The quantity [CV ]el represents the electronic specific heat for single electron. For
comparison with the experimentally measured specific heat of metals, we need to
calculate the electronic specific heat for one Kgm of metal. For this, we need to
know the number of valence electrons n in unit volume of metal and the density ρ
of metal.

Electronic specific heat =
[CV ]el n

ρ
, where [CV ]el =

π2

2

(
k2
BT

EF

)
=

π2n

2ρ

(
k2
BT

EF

)
Joules/Kgm. (85)

For illustrative purpose, let us consider copper, for which the required data are
obtained from Tables 1 & 2:

n = 8.49× 1028/m3; ρ = 8.96× 103 Kg/m3; EF = 7.05 eV.
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Using the values kB = 1.381× 10−23 J/K, 1 eV = 1.602× 10−19 J and T = 293o K,
we get

Electronic specific heat of copper =
π2 × 8.49

2× 8.96

(
1.3812 × 293

7.05× 1.602

)
× 10−2

= 2.31 J/KgmK.

Comparing this with the experimental value

Specific heat of copper = 3.85× 102 J/KgmK,

we find that the contribution of electrons to specific heat of metal is less than 1%.
For metals, the specific heat arises mostly from the oscillations of atoms at the lat-
tice points. Debye’s theory of specific heat of solids which is the most successful
theory takes into account only the molecular vibrations at lattice points.

From this, we conclude that electrons which play a dominant role in electrical
conductivity and thermal conductivity of metals make insignificant contribution to
the specific heat of metals.

7 Concluding Remarks

This article is devoted to the study of Weidemann-Franz law for electrical and ther-
mal conductivities of metals and how they can be explained on the basis of Electron
Theory of metals both in classical physics and quantum physics. Classical physics
treats electrons in metals in the same way as molecules in kinetic theory of gases
and yields only qualitative agreement with the experimental findings but fails mis-
erably in quantitative agreement. Treating electrons as Fermions that obey both
Pauli-exclusion principle and Fermi-Dirac statistics, quantitative agreement with
experimental values are achieved. It is amazing that the expressions deduced for
electrical conductivity and thermal conductivity for metals are essentially the same,
both in classical and quantum physics except in minor details, regarding the re-
laxation time and the electronic specific heat. This article provides an alternative
way of deducing expressions for electrical and thermal conductivities using Fermi
statistical distribution function without resorting to classical physics. Instead of
using the hand-waving arguments that only the electrons in the neighbourhood of
Fermi level participate in the reaction, while using the mean density n of electrons in
the expressions for conductivities, the quantum theory explicitly yields expressions
in terms of n(EF ), which when expressed in terms of n coincide with expressions
obtained in classical physics. The direct method of obtaining expressions for the
electrical and thermal conductivities in quantum theory is not found in many of the
standard textbooks.
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In quantum theory, the electrical conductivity and thermal conductivity depend
on relaxation time τ and it is assumed that it is the same in both cases. The question
arises whether τ is independent of temperature or temperature-dependent. Let us
look into the two possibilities.

1. The relaxation time τ is a constant and independent of temperature. Then
σ is a constant and independent of temperature and K is proportional to
temperature. This follows from the expressions that we have derived for σ
and K in terms of τ .

2. The relaxation time τ is inversely proportional to temperature. Then σ is
inversely proportional to temperature and K is independent of temperature.

Experiments support the second possibility, since the electrical resistance is found
to increase with increase of temperature, which means the electrical conductivity σ
decreases with raise of temperature. Also, it is found that the thermal conductiv-
ity K is independent of temperature and depends only on the temperature gradient.

Every theory is based on certain postulates and its validity is restricted to sit-
uations where these postulates are applicable. Free electron quantum theory is
applicable only for metals at normal temperatures but breaks down for semicon-
ductors and insulators. In these cases, electrons cannot be treated as free but they
should be considered to be propagated in a periodic potential due to the lattice
structure of the solid. This results in the band theory of solids with energy bands
inter-spaced by energy gaps.
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